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ABSTRACT

Diffusion weighted magnetic resonance (MR) imaging is
a powerful tool that can be employed to study white mat-
ter microstructure by examining the 3D displacement profile
of water molecules in brain tissue. By applying diffusion-
sensitized gradients along a minimum of 6 directions, second-
order tensors can be computed to model dominant diffusion
processes. However, conventional DTI is not sufficient to
resolve crossing fiber tracts. Recently, a number of high-
angular resolution schemes with greater than 6 gradient di-
rections have been employed to address this issue. In this
paper, we introduce the Tensor Distribution Function (TDF),
a probability function defined on the space of symmetric pos-
itive definite matrices. Here, fiber crossing is modeled as an
ensemble of Gaussian diffusion processes with weights spec-
ified by the TDF. Once this optimal TDF is determined, the
diffusion orientation distribution function (ODF) can easily
be computed by analytic integration of the resulting displace-
ment probability function.
directions may also be derived directly from the TDF.

1. INTRODUCTION

In the past decade, diffusion magnetic resonance imaging
(MRI) has become a powerful tool for studying the struc-
ture of fibrous materials. By applying diffusion-sensitized
gradients, diffusion MRI characterizes the particle diffusivity
profile in various tissues. When the duration of the applied
diffusion sensitization δ is much smaller than the time be-
tween the two pulses, the MR signal attenuation is related to
the displacement probability function using a Fourier integral
relationship with respect to a wave vector q [1].
In brain imaging, diffusion MRI is particularly advanta-

geous over conventional non diffusion-weightedMRI as it can
reveal the configuration and orientation of fiber tracts in white
matter. The Diffusion Tensor MRI (DT-MRI) proposed in [2]
models the water displacement probability function using a
zero-mean 3D Gaussian distribution whose covariance ma-
trix, a second-order positive-definite symmetric tensor, repre-
sents the principal directions of diffusion and orientation of
local fiber tracts. Although extremely powerful and easy to
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compute, DT-MRI has some disadvantages. For example, any
Gaussian probability distribution function has at most one ori-
entational mode (principal direction), and thus can not resolve
fiber crossing.
More recently, several different approaches have been de-

veloped to address this issue, involving sets of diffusion gra-
dients with high angular resolution, by sampling the q-space
on one or more shells with fixed radii. Methods such as the
q-ball imaging technique [3], the Persistent Angular Structure
(PAS) technique [4] and Spherical deconvolution techniques
[5] have been proposed to recover partial information on the
displacement probability function, while still allowing the in-
ference of underlying fiber orientations.
In this paper, we propose a new approach, the computa-

tion of the tensor distribution function (TDF), to model fiber
crossing in diffusion MR images. By using Gaussian distri-
butions as basis functions, we expand the unknown displace-
ment probability function with the weights given by the TDF.
This may also be viewed as a natural, probabilistic extension
of the multi-compartmental model. With the computation of
the TDF, the water displacement probability function, orien-
tation distribution function (ODF), tensor orientation distri-
bution (TOD), and their corresponding anisotropy measures
may all be obtained through simple analytic relations.

2. THEORY

In standard diffusion-weighted MRI, images are acquired
using the Stejskal-Tanner pulsed gradient spin-echo method.
With some simplifications (rectangular pulse profiles), mea-
sured image intensities S are linked to p, the displacement
probability function of water molecules, via the following
Fourier transform

S(q) = S(0)

∫
p(x) exp(iq · x)dx (1)

here the wavenumber q = rδG, where r, δ, andG are the gy-
romagnetic ratio, the duration of the diffusion sensitization,
and the applied magnetic gradient vector. Without loss of
generality, let us assume the constant S(0) is 1.
Assuming a simple Gaussian-diffusion one-tensor model,

the displacement probability function evaluated at position x
(given diffusion tensorD, and diffusion time t) is
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p(x) = ((4πt)3 det(D))−
1

2 exp
(
−

xtD−1x

4t

)
(2)

Thus, the measured diffusionMR image intensities in this
one-tensor case is simply S(q) = exp(−tqtDq). It is often
useful to use the normalization q̃ = q/|q|, and the notation
b = t|q|2. In this case, we have S(q̃) = exp(−bq̃tDq̃).

2.1. The Tensor Distribution Function

Let us first denote the space of symmetric positive definite
3-by-3 matrices as D. We seek a probabilistic ensemble of
tensors, as represented by a Tensor Distribution Function P
defined on the tensor space D, that best explains the observed
diffusion-weighted images. In this case, the calculated image
intensity is

Scalculated(q) =

∫
D∈D

P (D) exp
(
− tqtDq

)
dD (3)

To solve for an optimal TDF P ∗, we apply multiple
diffusion-sensitized magnetic field gradients in directions qis,
and arrive at P ∗ using the least-squares principle

P ∗ = argmin
P

∑
i

(
Sobs(qi) − Scalculated(qi)

)2

(4)

To simplify our derivations, we define the error vector
E(qi) = Sobs(qi) − Scalculated(qi) to be the contribution to
the total error with respect to qi. For P (D) to be a true tensor
distribution function, we have to enforce two contraints, i.e.,
the non-negativity constraint: P (D) ≥ 0 for everyD, and the
probability density constraint:

∫
P (D)dD = 1.

To enforce the first constraint, we utilize the non-negativity
property of the exponential function and letP (D) = exp(R(D)).
The minimization problem as proposed above is now opti-
mized in the associated R space, ensuring the non-negativity
of the resulting TDF. To this end, the gradient descent in the
R space for this minimization problem is:

dR

dτ
(D) =

∑
i

2E(qi) exp(R(D))F (D, qi) (5)

Here, τ is an artificial time, and F (D, qi) = exp
(
− tqt

i
Dqi

)
.

Let us now turn to address the second constraint. We first
rewrite this constraint in theR space:

∫
D∈D

exp
(
R(D)

)
dD =

1, and modify the gradient direction in Eq. 5 by gradient pro-
jection onto the constraint space. This gives us the following
modified gradient descent

dR

dτ
(D) =

∑
i

E(qi) exp(R(D))F (D, qi) + L exp(R(D))

(6)

where

L = −

∫
D∈D

exp(R(D))
∑

i
E(qi) exp(R(D))F (D, qi)dD∫

D∈D
exp(R(D))2dD

2.2. Parametrizing the Tensor Space D

The solution space D is a 6-dimensional space, and some
reduction is necessary for numerical optimization. To this
end, we assume that two eigenvalues (out of three) are equal
for each individual tensor in D, which is reasonable in prac-
tice. With this assumption, we only need to specify, for each
tensor, one unit direction on the sphere which we associate
with the third eigenvalue. In other words, every tensor D
may be expressed using D(λ, θ), where the eigenvalues λ =
(λ1, λ2) (with λ2 the repeated eigenvalue), and θ = (θ1, θ2)
the azimuthal and polar angles associated with λ1. smaller
or greater than the third eigenvalue, allowing more types of
tensors to be included. eigenvalues) and one unit direction,
allowing us to reduce D to a 4-dimentsional space.
Lastly, the unit direction associated with each tensor in D

is initially expanded and parameterized with respect to the n
diffusion-sensitized gradient directions qis. The rationale be-
hind this particular discretization is that the angular resolution
of computed fiber tracts should be linearly related to the num-
ber of independent diffusion-sensitized gradients employed
when acquiring HARDI. Once an initial solution is computed
for the tensor distribution function, we further refine the angu-
lar resolution (beyond that given by the diffusion-sensitizing
gradient directions) by using a multi-resolution scheme.

2.3. From TDF to ODF and Beyond

Once the optimal TDF is calculated, the displacement proba-
bility function p is simply:

p(x) =

∫
D∈D

P (D)((4πt)3 det(D))−
1

2 exp
(
−

xtD−1x

4t

)
dD

(7)
Moreover, the ODF can be analytically computed by ra-

dial integration:

ODF (x̃) = C

∫
∞

r=0

p(rx̃)dr

= C

∫
D∈D

P (D)
(

det(D)x̃tD−1x̃
)− 1

2

dD (8)

Here C is a normalizing constant. Lastly, we determine
dominant fiber directions by examining the peaks in the Ten-
sor Orientation Distribution Function (TOD), the marginal
density function of the TDF by integrating out the eigenvalues
λ = (λ1, λ2):

TOD(θ) =

∫
λ

P (D(λ, θ))dλ (9)
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Here, we note that computing TOD may be advantageous
when comparing our TDF approach to methods such as Q-
ball imaging, where determination of dominant fiber tract di-
rections is less straightforward.

3. RESULTS

In this section, we present experimental results to validate
the proposed TDF approach. Two diffusion-sensitized gra-
dient protocols were acquired from an individual subject on a
Bruker Medspec 4 Tesla MRI scanner, with a transverse elec-
tromagnetic (TEM) headcoil. The timing of the diffusion se-
quence was optimized for SNR according to the scheme pro-
posed in [6].
The first protocol used 27 diffusion-sensitized gradi-

ent directions, evenly distributed on the hemisphere, and
three baseline scans with no diffusion sensitization (i.e., T2-
weighted images). Acquisition parameters were (b-value:
1146 s/mm2; TE/TR: 91.7/6090 msec; FOV=230x230; in-
plane resolution: 1.8mmx1.8mm; 21 x 5mm slices with a
0.5mm gap; acquisition time 3:05 minutes). The second pro-
tocol used 94 diffusion-sensitized gradient directions, and 11
baseline scans with no diffusion sensitization (b-value: 1159
s/mm2; TE/TR: 92.3/8250 msec; FOV=230x230; in-plane
resolution: 1.8mmx1.8mm; 55 x 2mm contiguous slices; ac-
quisition time 14:30 minutes). To assess the performance of
the TDF approach, we first simulate various configurations
of one-tensor systems using different b values and signal-
to-noise ratios (SNR) (similar to those seen in real HARDI
data). To quantitatively compare the proposed TDF approach
to other methods in the literature, we compare the calcu-
lated ODF (from the computed TDF) and the true ODF using
the L1-norm, L2-norm, and the Kullback-Leibler distance.
Here, we chose λ1 = 18 and λ2 = 2 (10−10m2s−1 ) as the
eigenvalues for each individual tensor, and employed Rician
noise in our simulations. The ODFs were rendered using 642
points, as determined using an icosahedral approximation of
the sphere.
Table 1 compares the mean and standard deviation of the

three performance measures with a fixed b value and differ-
ent SNR’s (10, 15, and 20) using the 27-direction protocol.
The results indicate that the TDF approach is robust, and
is relatively independent of the SNR (signal-to-noise ratio).
Moreover, the results are comparable to those reported in
[5]. In Tables 2 and 3, we investigated the influence of b val-
ues on the performance measures, and the results indicated
that the TDF approach, similar to other methods, performs
better with increasing b values (in this paper, b ranges from
1000 to 4000 s/mm2). To assess the performance in re-
solving fiber-crossing, we simulated two-tensor systems with
equal weights and varying angles of crossing (45, 60 and 90
degrees), and the corresponding performance measures are
shown in Table 4. Typical examples of recovered ODFs are
shown in Figure 1.

Simulations of fiber crossings were also conducted using
the 94-direction protocol. Interestingly, our results indicate
that the 27-direction protocol performs comparably to the 94-
direction protocol, indicating the numerical stability of the
TDF approach and the acquisition process.
In the next experiment, we investigated the concept of

the tensor orientation distribution function (TOD) by simu-
lating 2-tensor systems with 90-degree crossing using the 94-
direction protocol (the tensors are: 10−10diag(18, 2, 2)m2s−1

and 10−10diag(2, 18, 2)m2s−1). Examples of computed
TOD’s are plotted at the bottom of Figure 1. Visually, we
observe that the recovered TOD has two peaks corresponding
to the true fiber orientations. To help visualize the recovered
ODF’s, two fiber bundles crossing at 90 degrees were simu-
lated, using similar parameter settings as above, in a 10 by 10
by 1 grid (Figure 2, top left). Notice that the fiber crossing
is visually clearly resolved. In this case, the mean angular
separation of the two recovered tensors, as computed using
the corresponding TODs, is 89.8 degrees with a standard
deviation of 4.3 degrees.
To validate the TDF approach using real imaging data, the

diffusion-weighted MR images of a normal control subject
were acquired using the 27-direction protocol. Two regions
were used: region one covered the crossing of the corona ra-
diata and corpus callosum; region two was obtained from the
fanning of the arcuate fasciculus. The results are shown in
Fig. 2. In these cases, the recovered ODF plots appear con-
sistent with known anatomical structures.

Table 1. Means and standard deviations (in parenthesis) of
the three performance measures for one-tensor simulation re-
sults with varying SNR, b = 1200s/mm2

SNR 10 15 20
KL .0020 (1.1e-4) .0022 (1.0e-4) .0023 (6.2e-5)
L1 7.6e-4 (1.7e-5) 8.2e-4 (1.8e-5) 8.8e-4 (1.9e-5)
L2 .0032 (9.5e-5) .0034 (3.5e-5) .0035 (3.1e-5)

Table 2. Mean of the three performance measures for one-
tensor simulation results with varying b, SNR = 15
b 1000 1500 2000 2500 3000 3500 4000
KL 0.0022 0.0022 0.0021 0.0019 0.0018 0.0014 0.0013
L1 8.2e-4 8.2e-4 7.6e-4 7.6e-4 7.0e-4 6.4e-4 5.7e-4
L2 0.0034 0.0034 0.0033 0.0032 0.0030 0.0027 0.0026

Table 3. Estimated standard deviation of the three perfor-
mance measures for one-tensor simulation results with vary-
ing b, SNR = 15
b 1000 1500 2000 2500 3000 3500 4000
KL 1.2e-4 5.2e-5 8.7e-5 7.8e-5 7.9e-5 2.2e-4 1.4e-4
L1 6.4e-5 6.3e-4 6.0e-4 6.0e-4 5.5e-4 5.9e-5 3.9e-5
L2 1.1e-4 3.5e-5 7.1e-5 7.0e-5 7.2e-5 2.1e-4 1.4e-4

Table 4. Mean (and standard deviation) of the three perfor-
mance measures for two-tensor simulation results with vary-
ing angles, b = 1200s/mm2, SNR = 15
Angle 45 60 90
KL 2.51e-3 (2.21e-4) 3.75e-3 (5.72e-4) 3.12e-3 (4.21e-4)
L1 4.89e-4 (2.66e-5) 5.62e-4 (3.39e-5) 5.28e-4 (3.39e-5)
L2 2.08e-2 (5.44e-3) 3.70e-3 (2.82e-4) 1.27e-2 (1.60e-3)
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Fig. 1. Top: Examples of typical recovered ODFs for a two-
tensor system with relative orientations of 90 (left), and 60
(right) degrees (simulated data with 94 diffusion-sensitizing
gradients, b = 1200s/mm2, and SNR = 15). In these exam-
ples, we used the multi-grid method to refine angular resolu-
tion beyond the original 94 directions. Here, the final angu-
lar resolution is given by an icosahedral approximation of the
sphere (642 directions). Center: A sphere showing the direc-
tional color coding used for the ODFs. Bottom: Recovered
TOD of the same 2 systems.

4. CONCLUSION

In this paper, we introduced the computation of the Tensor
Distribution Function (TDF) as a novel method to resolve in-
travoxel fiber crossing in HARDI.We presented mathematical
formulations of the TDF, and proposed a projected gradient
descent algorithm for numerical computation of TDF. With
minor constraints on the diffusion process and the anisotropy
of individual tensors, the proposed approach solves for an
underlying tensor ensemble that best describes the observed
diffusion-weighted MR images. Moreover, it offers some
advantages relative to other methods since the displacement
probability function, orientation distribution function, and
principal fiber directions (or the tensor orientation function)
may all be directly derived from TDF through simple analytic
relations.

Fig. 2. Top Left: RecoveredODFs for a simulated 90 degrees
fiber crossing with Rician noise (SNR = 15). Top Right and
Bottom Left: Recovered ODFs from real HARDI imaging
data. Bottom Right: Positions of the windowed areas in the
subject’s brain. See text for more information.
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